FAŻL NAYRĪZĪ

FAŻL NAYRĪZĪ, ABU’L ʿABBĀS b. Ḥātem, mathematician and astronomer (fl. 900 C.E.). His family originated from Nayrīz/Nīrīz, a small town near Shiraz. Almost nothing is known of his personal life. The fact that he dedicated several works to the caliphs al-Moʿtażed (279-89/892-902) and al-Moktafī (289-95/902-8) and also the dedication notice to a vizier in his Resāla fī aḥdāṯ al-jaww, suggest that he, already a mature scholar, spent some time at the caliphal court in Baghdad around the turn of the 10th century (Sezgin, GAS VII, p. 330).

Nayrīzī’s most important work on mathematics is his Šarḥ ketāb Oqlīdes fi’l-oṣūl, a commentary on Euclid’s Elements (Sezgin, GAS V, p. 284), in which he quotes extensively from Simplicius’ commentary on the definitions and postulates and from Heron’s commentary on the propositions. Unfortunately, only the commentary on books 1-6 survive in Arabic; some lacunae are filled in the Latin translation by Gerard of Cremona of the commentary on books 1-10. One of Nayrīzī’s most interesting contributions to the study of Euclid was his citation of the discussions of the fifth postulate, i.e., that on parallel lines, by Aḡānīs (convincingly identified with Agapius by Sabra, 1974, X, p. 6) and Simplicius (see Sabra, 1969). Nayrīzī, basing himself on Aḡānīs, also wrote an independent treatise called Resāla fī bayān al-moṣādara al-mašhūra (Sezgin, GAS V, pp. 284-85).

Ebn al-Nadīm (ed. Flügel, p. 279) ascribes to Nayrīzī two sets of astronomical tables, a Ketāb al-zīj al-kabīr and a Ketāb al-zīj al-ṣaḡīr (Kennedy, p. 131, no. 46 and p. 135, no. 75; see Sezgin, GAS VI, p. 192). Ebn al-Qefṭī (p. 254) informs us that the former follows the Sendhend—that is, the Islamic adaptation of Indian astronomy best known in the 9th century through the Ketāb al-zīj al-Sendhend of Moḥammad b. Mūsā Ḵᵛārazmī. The Ketāb al-zīj al-kabīr, then must be the work referred to by Ṣāʿed Andalosī (tr. p. 112) and by Abū Rayḥān Bīrūnī (q.v.) in his Ketāb fī efrādal-maqāl fī amr al-ẓelāl (Bīrūnī, Rasāʾel, pp. 39, 51-53, 94), where Nayrīzī is associated in his treatment of gnomonics with such followers of the Sendhend as Ebrāhīm b. Ḥabīb Fazārī, Yaʿqūb b. Ṭāreq, Moḥammad Ḵᵛārazmī, Aḥmad b. ʿAbd-Allāh Ḥabaš Marvazī, and Abū Maʿšar Balḵī (q.v.). If this Zīj al-kabīr is the one consistently referred to by Bīrūnī, as seems plausible, then it was dedicated to al-Moʿtażed, since once in al-Qānūn al-masʿūdī (II, pp. 675-76) Bīrūnī refers to the motion of the solar apogee expounded by Nayrīzī in the third maqāla of his al-Zīj al-moʿtażedī (for other references to Nayrīzī’s Zīj by Bīrūnī, see Bīrūnī’s al-Qānūnal-masʿūdī II, pp. 581-85, 591, 595, 604, 952-54; Ketāb taḥdīd, p. 196; and Ketāb maqālīd, pp. 132-33). Also Ebn Yūnos (pp. 60-65, 68-75, 118-21, 160-61, 164-65) frequently criticizes Nayrīzī for mostly minor errors, especially those consequent on his blindly accepting the results of Yaḥyā b. Abī Manṣūr Ṭabarī and his al-Zīj al-momtaḥan al-raṣadī al-maʾmūnī. Perhaps in al-Zīj al-ṣaḡīr Nayrīzī became a partisan of al-Zīj al-momtaḥan. It is not clear to which zīj might be attributed Nayrīzī’s adoption under the name al-jadwal al-jāmeʿ of Ḥabaš’s jadwal al-taqwīm and his use of them in the solution of problems in spherical trigonometry described at length by Abū Naṣr b. ʿErāq (pp. 30-58). Like the two zījes, Nayrīzī’s Tafsīr al-ketāb al-majesṭī, a commentary on Ptolemy’s Almagest, is lost (Ebn al-Nadīm, ed. Flügel, p. 268; Ebn al-Qefṭī, p. 254; Sezgin, GAS VI, p. 192). It is, however, often referred to by Bīrūnī (Āṯār, tr. Sachau, pp. 139-40; idem, Taḥdīd, p. 95; idem, Qānūn II, pp. 779-80; idem, Ketāb maqālīd, pp. 148-51), and is mentioned by Neẓāmī ʿArūżī (Čahār maqāla, ed. Qazvīnī, text, p. 88) as the best commentary on the Almagest.

Unlike these three major works, Nayrīzī’s minor works on astronomy (Sezgin, GAS VI, p. 192) for the most part are extant. His Ketāb le’l-ʿamal be’l-asṭorlāb al-korawī, said to be the best on the subject, and Resāla fī samt al-qebla have been translated into German.

Nayrīzī composed a number of works on astrology. His commentary on Ptolemy’s Quadripartitum (Ketāb al-arbaʿa; Ebn al-Nadīm, ed. Flügel, p. 279; Ebn al-Qefṭī, p. 98; Sezgin, GAS VII, p. 44) is lost, nor is it at all certain that Bīrūnī’s quotation from Nayrīzī in his Maqāla fī sayr sahmay al-saʿāda (pp. 24-27) is, as Sezgin states, from this commentary. Bīrūnī’s other citation of an astrological opinion held by Nayrīzī (Tafhīm, sec. 389, pp. 236-37) is from his equally non-extant Ketāb al-mawālīd. There does survive from Nayrīzī’s pen an unpublished Maqāla fī hawādeṯ al-qerānāt wa’l-kosūfāt al-dālla ʿala’l-fetan wa’l-ḥorūb… (Sezgin, GAS VII, p. 156).

Nayrīzī is also the author of two works dealing more or less with meteorology. The first is philosophical and mathematical, entitled Ketāb fī maʿrefat ālāt toʿlamo behā abʿād al-ašyāʾ al-šāḵeṣa fi’l-hawāʾ wa’llatī ʿalā basīṭ al-ʿarż wa ajwār al-awdīa wa’l-ābār wa ʿorūż al-anhār (Sezgin, GAS VII, pp. 268-69); the other work, entitled Resāla fī aḥdāṯ al-jaww, is more astrological. According to Ebn al-Nadīm (p. 279) and Ebn al-Qefṭī (p. 254), the latter was dedicated to al-Moʿtażed, but the Istanbul manuscript examined by Sezgin (GAS VII, p. 330) refers only to an unnamed vizier.

Bibliography (for cited works not given in detail, see “Short References”):

Editions and translations of Nayrīzī’s works: (1) Faṣl fī taḵṭīṭ al-sāʿāt al-zamānīya fī koll qobba wa fī qobba yostaʿmal lahā, published in al-Rasāʾel al-motafarreqa fi’l-hayʾa le’l-motaqaddemīn wa moʿāṣerīn al-Bīrūnī, Hyderabad, 1948.

(2) Ketāb le’l-ʿamal be’l-asṭorlāb al-korawī, tr. H. Seemann as Das kugelformige Astrolab nach den Mitteilungen von Alfons X von Kastilien und den vorhandenen arabischen Quellen, Abh. zur Geschichte der Naturwissenschaften und der Medizin 8, Erlangen, 1925, pp. 32-40; reprod. in F. Sezgin, ed., Arabische Instrumente in orientalistischen Studien IV, Frankfurt, 1991, pp. 359-431 (Seemann’s tr. pp. 394-402).

(3) Resāla fī samt al-qebla, tr. C. Schoy as “Abhandlung von al-Faḍl b. Ḥātim an-Nairīzī. Über die Richtung der Qibla,” Sitzungsberichte der Bayerischen Akademie der Wissenschaften, Math.-phys. Kl., 1922, pp. 55-68.

(4) Šarḥ ketāb Oqlīdes fi’l-oṣūl, first six books ed. with Latin translation by R. O. Besthorn and J. L. Heiberg as Codex Leidensis 399 1, 3 parts in six fascicles (fasc. 1-3/1, Leiden, 1893-1910; 3/2, ed. G. Junge, J. Raeder, and W. Thomson, Leiden, 1932); books 1-10 in Gerard of Cremonā’s Latin translations, publ. by M. Curtze as Anaritii in decem libros priores elementorum Euclidis commentaria, Leipzig, 1899; new ed. of books 1-4 by P. M. J. E. Tummers, Nijmegen, 1994.

Sources and studies. Abū Naṣr Manṣūr b. ʿAlī b. ʿErāq, Resāla fī barāhīaʿmāl jadwal al-taqwīm fī zīj Ḥabaš al-ḥāseb, in idem, Rasāʾel Abī Naṣr Manṣūr b. ʿErāq elā al-Bīrūnī, Hyderabad, 1948, treatise iv. Abū Rayḥān Bīrūnī, al-Tafhīm le awāʾel ṣenāʿat al-tanjīm, ed. and tr. R. R. Wright as The Book of Instruction in the Elements of the Art of Astrology, London, 1934.

Idem, al-Qānūn al-masʿūdī fi’l-hayʾa wa’l-nojūm, ed. S. H. Baranī, 3 vols., Hyderabad, 1945-56.

Idem, Rasāʾel al-Bīrūnī, Hyderabad, 1948. Idem, Ketāb taḥdīd nehāyat al-amāken, ed. P. G. Bulgakov, Cairo, 1964.

Idem, Maqāla fī sayr sahmay al-saʿāda wa’l-ḡayb, ed. and tr. with commentary, F. I. Haddad, D. Pingree, and E. S. Kennedy as “Al-Bīrūnī’s Treatise on Astrological Lots,” Zeitschrift for Geschichte der Arabisch-Islamischen Wissenschaft 1, 1984, pp. 9-54.

Idem, Ketāb maqālīd ʿelm al-hayʾa, ed. M. T. Debarnot, Damascus, 1985. Ebn al-Qefṭī, Taʾrīḵ al-ḥokamāʾ, ed. J. Lippert, Leipzig, 1903.

Abu’l-Ḥasan ʿAlī Ebn Yūnos, Zīj al-kabīr al-ḥākemī, ed. and tr. C. Caussin as "Le livre de la grande table Hakémite,” Notices et extraits des manuscrits de le Bibliothèque nationale 7, 1804, pp. 16-240.

T. Heath, A History of Greek Mathematics, 2 vols., Oxford, 1921, II, pp. 228-30 (Aḡānīs, whom Heath identifies with Geminus) and pp. 309-14 (Heron).

Kh. Jouiche, La théorie des paralléles en pays d’Islam, Paris, 1986, pp. 127-37.

E. S. Kennedy, “A Survey of Islamic Astronomical Tables,” Transactions of the American Philosophical Society, N.S. 46, 1956, pp. 121-77.

A. Qorbānī, Rīāżīdānān-e īrānī az Ḵᵛārazmī tā Ebn Sīnā, Tehran, 1350 Š./1971, pp. 73-85.

A. I. Sabra, “Simplicius’s Proof of Euclid’s Parallels Postulate,” Journal of the Warburg and Courtauld Institutes 32, 1969, pp. 1-24.

Idem, Dictionary of Scientific Biography, New York, 1974, X, pp. 5-7.

Qāżī Abu’l-Qāsem Ṣāʿed b. Aḥmad Andalosī, Ketāb ṭabaqāt al-omam, ed. H. Bū ʿAlwān, Beirut, 1985; tr. R. Blachères, as Catégories des nations, Paris,1935.

(David Pingree)

Cite this article:

David Pingree, “FAŻL NAYRĪZĪ,” Encyclopaedia Iranica, IX/5, pp. 461-463, available online at http://www.iranicaonline.org/articles/fazl-nayrizi- (accessed on 30 December 2012).